Sustainability

Glass Industry: 16 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction

architecture-2256489_640.jpg

Glass production is a highly energy-intensive industrial process. The container and flat glass industries (which combined account for 80% of glass production) emit over 60 million tonne of CO2 emissions per year. The global increase in glass consumption and production will drive significant growth in the industry’s absolute energy use and GHG emissions.

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the glass industry worldwide. However, today, given the projected continuing increase in glass production, future reductions (e.g., by 2030 or 2050) in absolute energy use and GHG emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for glass production or technologies that can economically capture and store the industry’s GHG emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the glass industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified sector-specific and cross- energy-efficiency technologies for the glass industry that have already been commercialized. However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the glass industry that have not yet been commercialized.

In 2017, Cecilia Springer of Lawrence Berkeley National Laboratory and I wrote a report that consolidated available information on emerging technologies for the glass industry with the goal of giving engineers, researchers, investors, glass companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

The information about the 16 emerging technologies for the glass industry was covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table. Emerging energy-efficiency and GHG emissions-reduction technologies for the glass industry (Springer and Hasanbeigi, 2017)

Table. Emerging energy-efficiency and GHG emissions-reduction technologies for the glass industry (Springer and Hasanbeigi, 2017)

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

1.     Springer, Cecilia and Hasanbeigi, Ali (2016). Emerging Energy Efficiency and Carbon Dioxide Emissions-Reduction Technologies for the aluminum Industry. Berkeley, CA: Lawrence Berkeley National Laboratory.

2.     Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

3.     Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

4.     Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn (2012). Emerging Energy Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5956E.

5.     Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

References:

  • Springer, Cecilia; Hasanbeigi, Ali and Price, Lynn (2017). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the glass Industry. Berkeley, CA: Lawrence Berkeley National Laboratory.

Aluminum Industry: 10 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction

Author: Ali Hasanbeigi, Ph.D.

Aluminum production is one of the most energy-intensive industrial processes worldwide. Although about a third of global aluminum production uses electricity from hydropower sources, the increasing use of coal as the primary fuel for electricity for aluminum production in many countries means that aluminum production is still a significant source of greenhouse gas (GHG) and greenhouse gas  emissions. According to the International Energy Agency (IEA), the aluminum industry accounts for about 1% of global GHG emissions (IEA 2012).

Annual world aluminum demand is expected to increase two- to three-fold by 2050. The bulk of growth in consumption of aluminum will take place in China, India, the Middle East, and other developing countries, where consumption is expected to nearly quadruple by 2025. To meet this increased demand, production is projected to grow from approximately 51 million tonnes (Mt) of primary aluminum in 2014 to 89-122 Mt in 2050 (IEA 2012). This increase in aluminum consumption and production will drive significant growth in the industry’s absolute energy use and GHG emissions.

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the aluminum industry worldwide. However, today, given the projected continuing increase in absolute aluminum production, future reductions (e.g., by 2030 or 2050) in absolute energy use and GHG emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for aluminum production or technologies that can economically capture and store the industry’s GHG emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the aluminum industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified sector-specific and cross- energy-efficiency technologies for the aluminum industry that have already been commercialized. However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the aluminum industry that have not yet been commercialized.

In 2016, Cecilia Springer of Lawrence Berkeley National Laboratory and I wrote a report that consolidated available information on emerging technologies for the aluminum industry with the goal of giving engineers, researchers, investors, aluminum companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

Information about 10 emerging technologies for the aluminum industry was covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for the aluminum industry (Springer and Hasanbeigi, 2016)

Picture2.png

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

1.     Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

2.     Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

3.     Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn (2012). Emerging Energy Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5956E.

4.     Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

References:

Springer, Cecilia; Hasanbeigi, Ali and Price, Lynn (2016). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Aluminum Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-1005789

·      International Energy Agency, and Organisation de coopération et de développement économiques. 2012. Energy Technology Perspectives: Scenarios & Strategies to 2050 : In Support of the G8 Plan of Action. Paris: OECD, IEA.


Global Efficiency Intelligence and Rocky Mountain Institute are Assisting Chinese Cities To Peak Their GHG Emissions

HK small.jpg

In September 2015 at the first U.S.-China Climate-Smart/Low-Carbon Cities Summit, China’s Alliance of Pioneer Peaking Cities (APPC) announced that 23 cities and provinces are now members and committed to peaking emissions by or before 2030. In addition, these cities committed to report on greenhouse gas (GHG) inventories, establish climate action plans, and enhance bilateral and multilateral partnership and cooperation. These cities and provinces represent about 16.8 percent of China’s population, 27.5 percent of national GDP, and 15.6 percent of national carbon dioxide emissions. By 2050, over 80% of Chinese population will be living in cities.

With industry sector accounting for over 65% of primary energy use and about 70% of total GHG emissions in China, it is quite common to find manufacturing plants (including heavy industries) within the boundary of many cities in China. Therefore, peaking GHG emissions in Chinese cities will not be possible without addressing the energy use and GHG emissions in industries located in those cities.

One of the APPC cities is Wuhan, the capital of Hubei province. Wuhan committed to achieve the peaking of GHG emissions by 2022. Global Efficiency Intelligence (GEI) has joined Rocky Mountain Institute (RMI) in their effort to help the city of Wuhan to peak its industrial GHG emissions by 2022. In this project, RMI and GEI are working with local partners to conduct both technical and policy analysis in order to come up with a concrete action plan and practical suggestions for the city of Wuhan to achieve its emission peaking goal. The aim is to develop methodologies and tools that can be replicated across other cities in China to help them with their GHG emissions peaking targets. 

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.


The Impact of Emissions Control Technologies on Emissions from the Cement and Steel Industry in China up to 2050

smoke-258786_1280.jpg

Production of iron and steel is an energy-intensive and air polluting manufacturing process. In 2014, the iron and steel industry accounted for around 28 percent of primary energy consumption of Chinese manufacturing (NBS 2015a). Steel production in 2015 was 804 Mt (worldsteel, 2016), representing 49.5% of the world production that year (Figure 1).

Figure 1. China’s Crude Steel Production and Share of Global Production (1990-2015) (EBCISIY, various years; NBS, 2015b, worldsteel 2016)

Figure 1. China’s Crude Steel Production and Share of Global Production (1990-2015) (EBCISIY, various years; NBS, 2015b, worldsteel 2016)

Chinese steel industry contributed to about 20% of SO2 emissions, and 27% of dust and PM emissions for all key manufacturing industry in China in 2013 (Wang et al. 2016).

China also produces over half of the world’s cement with 2,360 million Mt produced in China in 2015 (NBS 2015b). Two types of kilns are used in China to produce clinker, which is the key ingredient in cement: vertical shaft kilns and rotary kilns. Vertical shaft kilns are outdated technologies that use significantly more energy to produce a ton of clinker than rotary kilns do. The cement production from rotary kilns grew rapidly in recent years, from 116 Mt in 2000 to 1,494 Mt in 2010 (Figure 2).

Note: 2011 – 2015 production shares are based on our model projectionsFigure 2. Cement production in China by kiln type, 1990-2015 (ITIBMIC 2004, MIIT 2011, NBS 2015b)

Note: 2011 – 2015 production shares are based on our model projections

Figure 2. Cement production in China by kiln type, 1990-2015 (ITIBMIC 2004, MIIT 2011, NBS 2015b)

Consistent with the Chinese cement industry’s large production volume, total CO2 emissions from the industry are very high, as are associated air pollutant emissions, including sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO), and particulate matter (PM). These emissions cause significant regional and global environmental problems. The cement industry is the largest source of PM emissions in China, accounting for 40 percent of PM emissions from all industrial sources and 27 percent of total national PM emissions (Lei et al. 2011).

 

In addition to setting emissions standard and adoption of end-of-pipe emissions control technologies, Chinese government policies also focus on reducing energy use, which, in turn, helps to reduce greenhouse gas (GHG) emissions. Other important co-benefits of energy-efficiency policies and programs are reduced harm to human health through reduction in air pollutant emissions, reduced corrosion, and reduction in crop losses caused by surface ozone and regional haze.

In early 2017, my colleagues at Lawrence Berkeley National Laboratory and I published a study in which we analyzed and projected the total particulate matter (PM) and sulfur dioxide (SO2) emissions from the Chinese cement and steel industry during 2010-2050 under three different scenarios. We used the bottom-up emissions control technologies data to make the emissions projections. The three distinct scenarios developed were as follow:

  1. Base Case Scenario: a baseline scenario that assumes that only policies in place in 2010 continue to have effect, and autonomous technological improvement (including efficiency improvement and fuel switching) occurs. The end-of-pipe emissions control technologies shares and penetration remain at 2010 level through the study period up to 2050.

  2. Advanced scenario: China meets its energy needs and improves its energy security and environmental quality by deploying the maximum feasible share of currently cost-effective energy efficiency and renewable supply technologies by 2050. The end-of-pipe emissions control technologies share and penetration remain at 2010 level through the study period up to 2050.

  3. Advanced scenario with Improved End-of-Pipe (EOP) Emissions Control (Advanced EOP): Similar to Advanced scenario explained above with the only difference being the end-of-pipe emissions control technologies share and penetration rate improves through the study period up to 2050.

In all three scenarios, only technologies that are commercialized or piloted at scale are considered. Following figures show the result of our analyses.

Figure 3. Total PM emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 3. Total PM emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 4. Total SO2 emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 4. Total SO2 emissions of Chinese cement industry under different scenarios during 2010-2050

Figure 5. Total PM emissions of Chinese steel industry under different scenarios during 2010-2050

Figure 5. Total PM emissions of Chinese steel industry under different scenarios during 2010-2050

Figure 6. Total SO2 emissions of Chinese steel industry under different scenarios during 2010-2050

Figure 6. Total SO2 emissions of Chinese steel industry under different scenarios during 2010-2050

More details of the methodology used and results can be found in our report which is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  1. Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139

  2. Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlen (2016). A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL- 1006356

  3. Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang. (2013). A Bottom-Up Model to Estimate the Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry. Energy, Volume 50, 1 February 2013, Pages 315-325

  4. Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

  5. Hasanbeigi, Ali; Agnes Lobscheid; Yue Dai; Price, Hongyou, Lynn; Lu (2012). Quantifying the Co-benefits of Energy-Efficiency Programs: A Case-study for the Cement Industry in Shandong Province, China Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5949E.

  6. Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang. (2012). Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5536E

  7. Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and ConcreteProduction. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

  8. Hasanbeigi, Ali; Price, Lynn; Hongyou, Lu; Lan, Wang (2009). Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China. Energy 35 (2010) 3461-3473

 

References

  • Hasanbeigi, Ali; Nina Khanna, Price, Lynn (2017). Air Pollutant Emissions Projection for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies. Berkeley, CA: Lawrence Berkeley National Laboratory.

  • Editorial Board of China Iron and Steel Industry Yearbook (EBCISIY). Various years. China Iron and Steel Industry Yearbook. Beijing, China (in Chinese).

  • Institute of Technical Information for Building Materials Industry (ITIBMIC). 2004. “Final Report on Cement Survey.” Prepared for the United Nations Industrial Development Organization (UNIDO) for the Contract Entitled Cement Sub-sector Survey for the Project Energy Conservation and GHG Emissions Reduction in Chinese TVEs-Phase II.

  • Lei,Y., Q. Zhang, C. Nielsen, K. He. 2011. “An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990-2020.” Atmospheric Environment 45:147-154.

  • Ministry of Industry and Information Technology (MIIT). 2011. Production of building materials industry in 2010 and rapid growth of output of major products.

  • NBS. 2015a. China Energy Statistics Yearbook 2015. Beijing: China Statistics Press.

  • NBS. 2015b. China Statistical Yearbook 2015. Beijing: China Statistics Press.

  • Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., Hao, J., Wang, Y., Zhou, J. 2016. A comprehensive emissions inventory ofmultiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of the Total Environment 559 (2016) 7–14.

  • World Steel Association (worldsteel). 2016. Steel Statistical Yearbook 2016.


Infographic: The Iron and Steel Industry’s Energy Use and Emissions

steel-mill-616526_1280.jpg

The iron and steel industry is one of the most energy-intensive and highest CO2 emitting industries and one of the key industrial contributors to air pollutions (PM, SO­2, etc.) in the world. The infographic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use and emissions in the iron and steel industry.

Global Efficiency Intelligence, LLC has experience conducting various projects and studies on energy efficiency, GHG and other emissions reduction, energy benchmarking, and technology roadmapping for the iron and steel industry in China, India, U.S., Germany, and Mexico.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  • Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139

  • Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlen (2016). A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL- 1006356

  • Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  • Hasanbeigi, Ali; Price, Lynn, Aden, Nathaniel; Zhang Chunxia; Li Xiuping; Shangguan Fangqin. 2014. Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Journal of Cleaner Production, Volume 65, 15 February 2014, Pages 108–119

  • Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

  • Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang. (2013). A Bottom-Up Model to Estimate the Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry. Energy, Volume 50, 1 February 2013, Pages 315-325

  • Hasanbeigi, A., Price, L., Aden, N., Zhang C., Li X., Shangguan F. 2011. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Berkeley CA: Lawrence Berkeley National Laboratory Report LBNL-4836E.


Infographic: The Profile of Energy Use in Industrial Motor Systems

According to International Energy Agency, around half of the electricity used globally is consumed in electric motor systems. Industrial motor systems account for around 70% of manufacturing electricity consumption in different countries. The inforgraphic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use in motor systems worldwide.

Global Efficiency Intelligence, LLC is working on Global Motor Systems Efficiency Initiative and the U.S. Motor Systems Efficiency Initiative (covers 30 states in the U.S.) to analyze the energy use in industrial motor systems and energy efficiency potentials in these systems at manufacturing subsectors level in different countries or states in the U.S. For more information, click on the links above to see our projects page.

Available Now: U.S. Industrial Motor Systems Energy Efficiency Reports >>

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

18 Emerging Technologies and 180 Commercialized Technologies and Measures for Energy and Water Efficiency, and GHG Emissions Reduction in the Textile Industry

The textile industry uses large amounts of electricity, fuel, and water, with corresponding greenhouse gas emissions (GHGs) and contaminated effluent.  With regard to energy use, the textile industry’s share of fuel and electricity use within the total final energy use of any one country depends on the structure of the textile industry in that country. For instance, electricity is the dominant energy source for yarn spinning whereas fuels are the major energy source for textile wet processing.

In addition to using substantial energy, textile manufacturing uses a large amount of water, particularly for wet processing of materials, and produces a significant volume of contaminated effluent. Conserving water and mitigating water pollution will also be part of the industry’s strategy to make its production processes more environmentally friendly, particularly in parts of the world where water is scarce.

In 2016, the world’s population was 7.4 billion; this number is expected to grow to 9.5 billion by 2050. The bulk of this growth will take place in underdeveloped and developing countries. As the economy in these countries improves, residents will have more purchasing power; as a result, per-capita consumption of goods, including textiles, will increase. In short, future population and economic growth will stimulate rapid increases in textile production and consumption, which, in turn, will drive significant increases in the textile industry’s absolute energy use, water use, and carbon dioxide (CO2) and other environmentally harmful emissions.

Having the higher education background in both textile technology engineering and energy efficiency technologies, I wrote a report on commercially available energy-efficiency technologies and measures for the textile industry several years ago. This report included a review of over 180 commercialized energy efficiency technologies and measures for the textile industry based on case-studies around the world. In addition to conserving energy, some of the technologies and measures presented also conserve water. The report can be downloaded from this Link (Hasanbeigi 2010).

Several other reports also document the application of commercialized technologies. However, today, given the projected continuing increase in absolute textile production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for textile production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the textile industry’s mid- and long-term climate change mitigation strategies.

However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the textile industry that have not yet been commercialized. That was why a few years ago, I wrote another report that consolidated available information on 18 emerging technologies for the textile industry with the goal of giving engineers, researchers, investors, textile companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic. Table below shows the list of the technologies covered.

Table. Emerging energy-efficiency, water efficiency, and GHG emissions reduction technologies for the textile industry (Hasanbeigi 2015)

A few years ago when I conducted several day-long training on energy efficiency in the textile industry for hundreds of engineers and manager of textile companies in China, one major feedback we received, which did not surprise me, was that they did not know about most of the commercialized and emerging technologies we introduced. Engineers and manager are busy with day-to-day routine which rarely involves energy efficiency improvement.  

Also, you can check out the Energy Efficiency Assessment and Greenhouse Gas Emission Reduction Tool for the Textile Industry (EAGER Textile), which we developed a few years ago. EAGER Textile tool allows users to conduct a simple techno-economic analysis to evaluate the impact of selected energy efficiency measures in a textile plant by choosing the measures that they would likely introduce in a facility, or would like to evaluate for potential use.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

1.     Hasanbeigi, Ali; Price, Lynn; (2015). A Technical Review of Emerging Technologies for Energy and Water Efficiency and Pollution Reduction in the Textile Industry. Journal of Cleaner Production. DOI 10.1016/j.jclepro.2015.02.079.

2.     Hasanbeigi, Ali; Hasanabadi, Abdollah; Abdolrazaghi, Mohamad, (2012). Energy Intensity Analysis for Five Major Sub-Sectors of the Textile Industry. Journal of Cleaner Production 23 (2012) 186-194

3.     Hasanbeigi, Ali; Price, Lynn (2012). A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry. Renewable and Sustainable Energy Reviews 16 (2012) 3648– 3665.

References:

·      Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

·      Hasanbeigi, Ali, (2010). Energy Efficiency Improvement Opportunities for the Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-3970E


56 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction in the Iron and Steel Industry

Iron and steel manufacturing is one of the most energy-intensive industries worldwide. In addition, use of coal as the primary fuel for iron and steel production means that iron and steel production has among the highest carbon dioxide (CO2) emissions of any industry. According to the International Energy Agency, the iron and steel industry accounts for the largest share – approximately 27 percent – of CO2 emissions from the global manufacturing sector.

Figure 1: World steel production in 2015 by countries and regions (worldsteel 2016)

Figure 1: World steel production in 2015 by countries and regions (worldsteel 2016)

China accounts for around half of the world’s steel production. Annual world steel demand is expected to grow from approximately 1,410 million tonnes (Mt) of crude steel in 2010 to approximately 2,200 Mt in 2050. The bulk of this growth will take place in China, India, and other developing countries in Asia (Bellevrat and Menanteau 2008). This significant increase in steel consumption and production will drive a significant increase in the industry’s absolute energy use and CO2 emissions.

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the iron and steel industry worldwide. However, today, given the projected continuing increase in absolute steel production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for steel production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the iron and steel industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified sector-specific and cross- energy-efficiency technologies for the iron and steel industry that have already been commercialized (See figure below). However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the steel industry that have not yet been commercialized.

Figure 2: Commercialized energy efficiency technologies and measures for iron and steel industry (Source: IIP, 2012)

Figure 2: Commercialized energy efficiency technologies and measures for iron and steel industry (Source: IIP, 2012)

My colleagues at Lawrence Berkeley National Laboratory and I wrote a report that consolidated available information on emerging technologies for the iron and steel industry with the goal of giving engineers, researchers, investors, steel companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

The information about the 56 emerging technologies for the steel industry was covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for the iron and steel industry (Hasanbeigi et al. 2013)

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  1. Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139

  2. Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlen (2016). A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL- 1006356

  3. Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  4. Hasanbeigi, Ali; Price, Lynn, Aden, Nathaniel; Zhang Chunxia; Li Xiuping; Shangguan Fangqin. 2014. Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Journal of Cleaner Production, Volume 65, 15 February 2014, Pages 108–119

  5. Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang. (2013). A Bottom-Up Model to Estimate the Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry. Energy, Volume 50, 1 February 2013, Pages 315-325

  6. Hasanbeigi, A., Price, L., Aden, N., Zhang C., Li X., Shangguan F. 2011. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Berkeley CA: Lawrence Berkeley National Laboratory Report LBNL-4836E.

References:

  • Bellevrat, E., P. Menanteau. 2008. “Introducing carbon constraint in the steel sector: ULCOS scenarios and economic modeling.” Proceedings of the 4th Ulcos seminar, 1-2 October.

  • Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

  • Institute for Industrial Productivity. 2012. Iron and Steel technologies http://ietd.iipnetwork.org/content/iron-and-steel

  • worldsteel Association. 2016. World steel in figures.


Structural Change in Chinese Steel Industry and Its Impact on Energy Use and GHG Emissions up to 2030

Production of iron and steel is an energy-intensive and air polluting manufacturing process. In 2014, the iron and steel industry accounted for around 28 percent of primary energy consumption of Chinese manufacturing (NBS 2015a). Steel production in 2015 was 804 Mt (worldsteel, 2016), representing 49.5% of the world production that year (Figure 1).

Figure 1. China’s Crude Steel Production and Share of Global Production (1990-2015) (EBCISIY, various years; NBS, 2015b, worldsteel 2016)

Figure 1. China’s Crude Steel Production and Share of Global Production (1990-2015) (EBCISIY, various years; NBS, 2015b, worldsteel 2016)

China is a developing country and the iron and steel industry, as a pillar industry for Chinese economic development, has grown rapidly along with the national economy. The average annual growth rate of crude steel production was around 18% between 2000 and 2010. China’s steel production in 2014 consumed around 580 TWh of electricity and 18,013 PJ of fuel (NBS 2015a).

The promotion and application of energy-saving technologies has become an important step for increasing energy efficiency and reducing energy consumption of steel enterprises, especially during the 11th Five Year Plan (FYP) (2006-2010) and 12th FYP (2011-2015). During this time, energy-efficiency technologies adopted in China’s steel industry included: Coke Dry Quenching (CDQ), Top-pressure Recovery Turbine (TRT), recycling converter gas, continuous casting, slab hot charging and hot delivery, Coal Moisture Control (CMC), and recycling waste heat from sintering. The penetration level of energy-efficiency technologies in the steel industry has improved greatly in China, improving its energy efficiency and emissions reductions (Hasanbeigi et al. 2011).

Couple of years ago, my colleagues and I conducted a study that aimed to analyze influential factors that affected the energy use of steel industry in the past in order to quantify the likely effect of those factors in the future. For the first time, we developed a decomposition analysis method that can be used for the steel industry to analyze the effect of different factors including structural change on energy use of the steel industry.

The factors we analyzed were:

  1. Activity: Represents the total crude steel production.

  2. Structure: Represents the activity share of each process route (Blast Furnace/Basic Oxygen Furnace (BF-BOF) or Electric Arc Furnace (EAF) route).

  3. Pig iron ratio: The ratio of pig iron used as feedstock in each process route. This is especially important for the EAF process because the higher the pig iron ratio in the feedstock of the EAF, the higher the energy intensity of EAF steel production.

  4. Energy intensity: Represents energy use per ton of crude steel

In that study, a bottom-up analysis of the energy use of key medium- and large-sized Chinese steel enterprises (which account for around 85% of steel production in China) was performed using data at the process level. Both retrospective and prospective analyses were conducted in order to assess the impact of factors that influence the energy use of the steel industry in the past and estimate the likely impact in the future up to 2030.

Three scenarios were developed as follows:

o   Scenario 1: Low scrap usage: the share of EAF steel production grows slower and the pig iron feed ratio in EAF drops slower than other scenarios

o   Scenario 2: Medium scrap usage: the rate of growth in the share of EAF steel production and the drop in the pig iron feed ratio in EAF production is medium (between scenario 1 and 3)

o   Scenario 3: High scrap usage: the share of EAF steel production grows faster and the pig iron feed ratio in EAF production drops faster than other scenarios.

Figure 2 shows the energy intensities calculated for different steel production route up 2030

Figure 2. Final energy intensities calculated for key medium- and large-sized Chinese steel enterprises (2000-2030)

Figure 2. Final energy intensities calculated for key medium- and large-sized Chinese steel enterprises (2000-2030)

The results of our analysis showed that although total annual crude steel production of key Chinese steel enterprises (and most likely entire Chinese steel industry) is assumed to peak in 2030 under all scenarios, total final energy use of the key Chinese steel enterprises (and most likely the entire Chinese steel industry) peaks earlier, i.e. in year 2020 under low and medium steel scrap usage scenarios and in 2015 under high scrap usage scenario (Figure 3).

Figure 3. Total final energy use in key medium- and large-sized Chinese steel enterprises under each scenario (2000-2030)

Figure 3. Total final energy use in key medium- and large-sized Chinese steel enterprises under each scenario (2000-2030)

Energy intensity reduction of the production processes and structural shift from Blast Furnace/Basic Oxygen Furnace (BF-BOF) to Electric Arc Furnace (EAF) steel production plays the most significant role in the final energy use reduction. The decomposition analysis results showed what contributed to the reduction in the final energy use and its peak under each scenario. Figure 4 shows an example of results for Medium scrap usage scenario. 

The three scenarios produced for the forward looking decomposition analysis up to 2030 showed the structural effect is negative (i.e. reducing the final energy use) during 2010-2030 because of the increase in the EAF share of steel production in this period. Similarly, the pig iron ratio effect reduces the final energy use of key steel enterprises because of reduction in the share of pig iron used as feedstock in EAF steel production during this period. High scrap usage scenario had the largest structural effect and pig iron ratio effect because of higher EAF steel production and lower pig iron use in EAFs in this scenario.

Figure 4. Medium scrap usage scenario: Results of prospective decomposition of final energy use of key medium- and large-sized Chinese steel enterprises up to 2030

Figure 4. Medium scrap usage scenario: Results of prospective decomposition of final energy use of key medium- and large-sized Chinese steel enterprises up to 2030

The intensity effect also played a significant role in reducing final energy use of steel manufacturing during 2010-2030. This is primarily because of the energy intensity assumptions for production processes in 2020 and 2030. While the realization of such energy intensity reduction is uncertain and remains to be seen in the future, the aggressive policies by the Chinese government to reduce the energy use per unit of product of the energy intensive sectors, especially the steel sector, are a promising sign that the Chinese steel industry is moving towards those energy intensity targets. The “Top-10,000 Enterprises Energy Saving Program” and the “10 Key Energy Saving Projects Program” along with other policies and incentives in the coming years will significantly help to reduce the energy intensity of the steel industry in China.

More details of our analysis and results are presented in our report that is published on LBNL’s website and can be downloaded from this Link.

Please feel free to contact me if you have any question. Don't forget to follow us on LinkedInFacebook, and Twitter to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  1. Hasanbeigi, Ali; Arens, Marlene; Rojas-Cardenas, Jose; Price, Lynn; Triolo, Ryan. (2016). Comparison of Carbon Dioxide Emissions Intensity of Steel Industry in China, Germany, Mexico, and the United States. Resources, Conservation and Recycling. Volume 113, October 2016, Pages 127–139

  2. Zhang, Qi; Hasanbeigi, Ali; Price, Lynn; Lu, Hongyou; Arens, Marlen (2016). A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL- 1006356

  3. Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  4. Hasanbeigi, Ali; Price, Lynn, Aden, Nathaniel; Zhang Chunxia; Li Xiuping; Shangguan Fangqin. 2014. Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Journal of Cleaner Production, Volume 65, 15 February 2014, Pages 108–119

  5. Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang. (2013). A Bottom-Up Model to Estimate the Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Chinese Iron and Steel Industry. Energy, Volume 50, 1 February 2013, Pages 315-325

  6. Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

 

References

Editorial Board of China Iron and Steel Industry Yearbook (EBCISIY). Various years. China Iron and Steel Industry Yearbook. Beijing, China (in Chinese).

Hasanbeigi, A., Price, L., Aden, N., Zhang C., Li X., Shangguan F. 2011. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S. Berkeley CA: Lawrence Berkeley National Laboratory Report LBNL-4836E.

NBS. 2015a. China Energy Statistics Yearbook 2015. Beijing: China Statistics Press.

NBS. 2015b. China Statistical Yearbook 2015. Beijing: China Statistics Press.

World Steel Association (worldsteel). 2016. Steel Statistical Yearbook 2016. 


Moving Beyond Equipment and to System Efficiency: Massive Energy Efficiency Potential in Industrial Steam Systems in China

Author: Ali Hasanbeigi, Ph.D.

China is responsible for nearly 20% of global energy use and 25% of global energy-related CO2 emissions. The industrial sector dominates the country’s total energy consumption, accounting for about 70% of primary energy use and also country’s CO2 emissions. For these reasons, the development path of China’s industrial sector will greatly affect future energy demand and dynamics of not only China, but the entire world.

Sources: NBS, China Energy Statistical Yearbooks 2015. EIA, 2015

Sources: NBS, China Energy Statistical Yearbooks 2015. EIA, 2015

Steam is used extensively as a means of delivering energy to industrial processes. On average, industrial boiler and steam systems account for around 30% of manufacturing industry energy use worldwide. There exists a significant potential for energy efficiency improvement in steam systems; however, this potential is largely unrealized. A major barrier to effective policymaking, and to more global acceptance of the energy efficiency potential of steam systems, is the lack of a transparent methodology for quantifying steam system energy efficiency potential based on sufficient data to document the magnitude and cost-effectiveness of these energy savings by country and by region.

Source: U.S. DOE/AMO, 2012

Source: U.S. DOE/AMO, 2012

In 2013-2014, I led a UNIDO-funded study to develop and apply a steam system energy efficiency cost curve modeling framework to quantify the energy saving potential and associated costs of implementation of an array of boiler and steam system optimization measures. The developed steam systems energy efficiency cost curve modeling framework was used to evaluate the energy efficiency potential of coal-fired boiler (around 83% of industrial boilers) and steam systems in China’s industrial sector. Nine energy-efficiency technologies and measures for steam systems are analyzed.

The study found that total cost-effective (i.e. the cost of saving a unit of energy is lower than purchasing a unit of energy) and technically feasible fuel savings potential in industrial coal-fired steam systems in China in 2012 was 1,687 PJ and 2,047 PJ, respectively. These account for 23% and 28% of the total fuel used in industrial coal-fired steam systems in China in that year, respectively. The CO2 emission reduction potential associated with the cost-effective and total technical potential is equal to 165.82 MtCO2 and 201.23 MtCO2, respectively. By comparison, the calculated technical fuel saving potential for industrial coal-fired steam systems in China is approximately 9% of the total coal plus coke used in Chinese manufacturing in 2012 and is greater than the total primary energy use of over 160 countries in the world in 2010.

Several sensitivity analyses were conducted, their policy implications discussed, and uncertainties and limitations of this study were presented in the report we published. Our report is published by UNIDO and can be downloaded from here. Please feel free to contact me if you have any question.

Don't forget to follow us on LinkedInFacebook, and Twitter to get the latest about our new blog posts, projects, and publications.