Power

Aluminum Industry: 10 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction

Author: Ali Hasanbeigi, Ph.D.

Aluminum production is one of the most energy-intensive industrial processes worldwide. Although about a third of global aluminum production uses electricity from hydropower sources, the increasing use of coal as the primary fuel for electricity for aluminum production in many countries means that aluminum production is still a significant source of greenhouse gas (GHG) and greenhouse gas  emissions. According to the International Energy Agency (IEA), the aluminum industry accounts for about 1% of global GHG emissions (IEA 2012).

Annual world aluminum demand is expected to increase two- to three-fold by 2050. The bulk of growth in consumption of aluminum will take place in China, India, the Middle East, and other developing countries, where consumption is expected to nearly quadruple by 2025. To meet this increased demand, production is projected to grow from approximately 51 million tonnes (Mt) of primary aluminum in 2014 to 89-122 Mt in 2050 (IEA 2012). This increase in aluminum consumption and production will drive significant growth in the industry’s absolute energy use and GHG emissions.

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the aluminum industry worldwide. However, today, given the projected continuing increase in absolute aluminum production, future reductions (e.g., by 2030 or 2050) in absolute energy use and GHG emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for aluminum production or technologies that can economically capture and store the industry’s GHG emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the aluminum industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified sector-specific and cross- energy-efficiency technologies for the aluminum industry that have already been commercialized. However, information is scarce and scattered regarding emerging or advanced energy-efficiency and low-carbon technologies for the aluminum industry that have not yet been commercialized.

In 2016, Cecilia Springer of Lawrence Berkeley National Laboratory and I wrote a report that consolidated available information on emerging technologies for the aluminum industry with the goal of giving engineers, researchers, investors, aluminum companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

Information about 10 emerging technologies for the aluminum industry was covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for the aluminum industry (Springer and Hasanbeigi, 2016)

Picture2.png

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

1.     Hasanbeigi, Ali (2013). Emerging Technologies for an Energy-Efficient, Water-Efficient, and Low-Pollution Textile Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-6510E

2.     Hasanbeigi, Ali; Arens, Marlene; Price, Lynn; (2013). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Iron and Steel Industry. Berkeley, CA: Lawrence Berkeley National Laboratory BNL-6106E.

3.     Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn (2012). Emerging Energy Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-5956E.

4.     Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

References:

Springer, Cecilia; Hasanbeigi, Ali and Price, Lynn (2016). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for the Aluminum Industry. Berkeley, CA: Lawrence Berkeley National Laboratory. LBNL-1005789

·      International Energy Agency, and Organisation de coopération et de développement économiques. 2012. Energy Technology Perspectives: Scenarios & Strategies to 2050 : In Support of the G8 Plan of Action. Paris: OECD, IEA.


Available Now: Reports on Electricity Saving Potentials in U.S. Industrial Motor Systems

demand response.jpg

In the U.S., industrial electric motor systems account for over 70% of manufacturing electricity consumption. Motors are used to drive pumps, fans, compressed air systems, material handling, processing systems and more. Industrial motor systems represent a largely untapped cost-effective source for industrial energy efficiency savings that could be realized with existing commercialized technologies. A major barrier to effective policy making for government and utilities in the U.S. related to energy efficiency improvement in industrial motor systems is the lack of information and data on the magnitude and cost-effectiveness of these energy savings potential in each state in the U.S. and a comprehensive strategy and roadmap.

Global Efficiency Intelligence, LLC has been working on an initiative to study and analyze the industrial motor systems in different states in the United States. We have 30 States from different regions in the U.S. that are included in this initiative. All top 20 U.S. states in terms of industrial energy consumption are included in this initiative. We work with various public and private stakeholders on this project. This initiative focuses on industrial pumps, fans, and compressed air systems which together account for over 80% of electricity use in industrial motor systems in the U.S. We conduct various analyses at the state-level such as analyzing the energy use by each motor system type and system size at manufacturing subsector level (e.g. chemical, food, textile, steel, machinery, pulp and paper, etc.), analyzing energy saving potentials and cost by technology and system size for each state, analyzing barriers and drivers to energy efficiency and system optimization in industrial motor systems in each state, and analyzing policy making and market implications for each state.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Infographic: The Profile of Energy Use in Industrial Motor Systems

According to International Energy Agency, around half of the electricity used globally is consumed in electric motor systems. Industrial motor systems account for around 70% of manufacturing electricity consumption in different countries. The inforgraphic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use in motor systems worldwide.

Global Efficiency Intelligence, LLC is working on Global Motor Systems Efficiency Initiative and the U.S. Motor Systems Efficiency Initiative (covers 30 states in the U.S.) to analyze the energy use in industrial motor systems and energy efficiency potentials in these systems at manufacturing subsectors level in different countries or states in the U.S. For more information, click on the links above to see our projects page.

Available Now: U.S. Industrial Motor Systems Energy Efficiency Reports >>

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.