Cement industry

New Report: Deep Decarbonization Roadmap for California Cement Industry

Screen Shot 2019-08-14 at 7.54.30 PM.png

California’s cement plants are the largest consumers of coal in the state. California is the second-largest cement producing state in the United States after Texas. More than 70 percent of the energy used in California’s cement industry is coal and petroleum coke, which are two of the most air-polluting fossil fuels.

In early 2019, we published a report titled “California’s Cement Industry: Failing the Climate Challenge”. In that report we analyzed the current status of cement and concrete production in California, and benchmarked the energy use and CO2 emissions intensity of the state’s cement industry in comparison to other key cement-producing countries. The study presented in this report is a follow up to that study.

The goal of this study supported by the ClimateWorks Foundation is to develop a roadmap for decarbonization of California’s cement and concrete production. In this study, we develop scenarios up to 2040 to analyze different decarbonization levers that can help to reduce CO2 emissions of cement and concrete production in California. We included four key major decarbonization levers in our analysis, which are: energy efficiency, fuel switching, clinker substitution, and carbon capture, utilization, and storage (CCUS).

Under the business-as-usual (BAU) scenario, the total CO2 emissions from California’s cement industry will increase from 7.9 MtCO2 per year in 2015 to 10.7 MtCO2 per year in 2040, a 36% increase. Under the study’s Advanced Technology and Policy (Advanced) scenario, the total CO2 emissions from California’s cement industry will decrease to about 2.5 MtCO2 per year in 2040, a 68% reduction compared to the 2015 level, while cement production increases by 42% from 9.9 Mt in 2015 to 14.1 Mt in 2040.

To read the full report and see complete results and analysis of this new study, download the report from this link.

Don't forget to Follow us on LinkedIn , Facebook and Twitter to get the latest about our new blog posts, projects, and publications.

Report Release- California’s Cement Industry: Failing the Climate Challenge

Cement production is one of the most energy-intensive and highest carbon dioxide (CO2) emitting manufacturing processes in the world: On its own, the cement industry accounts for more than 5 percent of global anthropogenic CO2 emissions.

California is the second-largest cement producing state in the United States after Texas. California’s nine cement plants together produced about 10 million metric tonnes (Mt) of cement and emitted 7.9 Mt of GHG emissions in 2015. California’s cement factories are the largest consumers of coal in the state.

Global Efficiency Intelligence, LLC conducted a study supported by the Sierra Club and ClimateWorks Foundation to analyze the current status of cement and concrete production in California, and benchmarks the energy use and GHG emissions of the state’s cement industry in comparison to other key cement-producing countries.

The result of our benchmarking analysis shows that California’s cement industry has the second highest electricity intensity and fuel intensity among 14 countries/regions studied.

To read the full report and see the complete results and analysis, download the report from this link.

Don't forget to Follow us on LinkedIn , Facebook and Twitter to get the latest about our new blog posts, projects, and publications.

3 Key Manufacturing Sectors to Target for Reaching Paris Agreement's Goal

global-warming-2034896_1280.jpg

According to IPCC, the industry sector accounts for about a third of the world’s total anthropogenic greenhouse gas (GHG) emissions (after allocating electricity-related emission to end use sectors). This is by far greater than GHG emissions from the Building and Transportation sector, yet these two sectors often get more attention than the industry sector.

AFOLU: Agriculture, Forestry and Other Land Use Figure 1. The share of GHG emissions by economic sector (IPCC 2014)

AFOLU: Agriculture, Forestry and Other Land Use
Figure 1. The share of GHG emissions by economic sector (IPCC 2014)

Unlike building and transportation sector, the manufacturing sector is more complex which involves tens of industry subsectors that are vastly different from each other with regards to the production technologies and systems they use. It looks like this complexity drives many people and organizations away from the industry sector. However, without seriously tackling the energy use and GHG emissions in the industry sector, we will absolutely fail to meet the goals of Paris Climate Agreement.

Within the industry sector, there are many industry subsectors. Figure 2 below shows a high-level classification of industry subsector. Among these, there are only 3 industry subsectors that account for over 62% of total final energy use in industry sector worldwide. These three sectors are:

  1. Iron and steel industry

  2. Chemical and petrochemical industry

  3. Non-metallic minerals industry, which is mainly the cement industry, but also includes glass, lime and other smaller subsectors

In terms of GHG emissions, these three manufacturing subsectors, i.e. iron and steel industry, chemical and petrochemical industry, and cement industry account for even larger share, over 65% of total industry sector GHG emissions. This is because of high levels of non-energy related GHG emissions (or process emissions) from these three subsectors particularly the cement industry. Worldwide, around 63% of total GHG emissions from the cement industry is process-related emissions (from chemical reaction during calcination process), which are not included in the Figure 2 below.

Figure 2. The share of different industry subsector from total industry use in the world in 2014 (IEA 2017a)

Figure 2. The share of different industry subsector from total industry use in the world in 2014 (IEA 2017a)

What makes the matter worse is the high share of fossil fuels, especially coal used in the industry sector. Coal accounts for over 75% of the final energy used in the steel industry worldwide with another 10% of energy coming from natural gas and oil (IEA 2017a). In the cement industry worldwide, coal account for over 60% final energy use and natural gas and oil account for another 15% of total energy use (IEA 2018).

The other point to keep in mind is that with world’s population increasing from 7.6 billion in 2018 to around 10 billion people in 2050 with majority of population increase to happen in developing economies, the absolute demand for cement, steel, and chemicals is expected to increase significantly by 2050.

While many people are hoping that we will clean the electricity grid and then electrify almost everything, thereby addressing the climate change issue, this is far more complex in manufacturing sector compared with the building and transportation sector. First, as mentioned above, industry sector with many subsectors which are quite different technologically will need many different types of electrification technologies. Second, around 74% of the final energy used in industry sector is fuel from which almost 48% is used for high temperature heat (above 400 Degrees Celsius) most of which is used in the steel and cement industry among others (Figure 3).  Electrifying this high temperature heat demand has proved to be difficult in these 3 industry subsectors.

Figure 3. Share of energy use by economic sector (left) and breakdown of heat demand in industry (right) (IEA 2017b)

Figure 3. Share of energy use by economic sector (left) and breakdown of heat demand in industry (right) (IEA 2017b)

In summary, without decarbonizing the iron and steel, chemical and petrochemical, and cement industry, it is impossible to reach the Paris Climate Agreement’s goals and peak the total GHG emissions early enough to keep the temperature rise below 2 degrees Celsius. Therefore, we need more focused attention by public and private sectors as well as NGOs and philanthropists to gather and allocate resources to reduce GHG emissions in these 3 industry subsectors. The time is running out with regards to climate change mitigation timeline and peaking world’s GHG emissions. We need to focus on areas where we can get huge savings and gigaton scale GHG emissions reduction.  If we don’t, scientists have given us some clear dire warnings!

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Also read our related blog posts:

See the list of some of our related publications for the iron and steel, cement, and chemical industry from this link.

Sources:
IEA/WBCSD. 2018. Technology Roadmap-Low-Carbon Transition in the Cement Industry.
IEA. 2017a. Global Iron & Steel Technology Roadmap.
IEA. 2017b. Renewable Energy for Industry.
IPCC. 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change.

 


Infographic: The Embodied Carbon in Global Steel and Cement Trade

Authors: Ali Hasanbeigi, Daniel Moran, Prodipto Roy

container-1638068_1280.jpg

President Trump just signed an executive order to impose a 25% tariff on steel imports and 10% on aluminum imports to the U.S. While many people are discussing how this can lead to a trade war between certain nations, we decided to take a look at it through the lens of embodied carbon in traded goods.

The UNFCCC’s greenhouse gas (GHG) accounting system works on the basis of national production rather than consumption of emissions. This means that when goods are traded, their embodied emissions (e.g. emissions associated with manufacture) are also traded. However, these imported emissions are not counted towards a country’s reported climate impacts. It is estimated that around 25% of global CO2 emissions comprise goods and services which have been internationally traded.

In the recent study on Embodied Carbon in Globally Traded Goods funded by the ClimateWorks Foundation, Global Efficiency Intelligence, LLC. and KGM & Associate Ltd. use the most recent available data and a cutting-edge model to conduct a global assessment of the extent of the embodied carbon in globally traded goods, so-called carbon loophole. In addition, we have conducted a series of higher-resolution, deeper dive case studies into a few key sectors and geographies of most importance, including steel and cement.

The infographic below summarizes some of our key findings related to deep-dive analysis we conducted for embodied carbon in global steel and cement trade. As it is illustrated, steel trade accounts for a significant amount of embodied carbon in trade. Even though China doesn’t feature in the top three steel import sources for the United States (Canada, Brazil, and South Korea occupy the top three spots), China still accounts for 40% of carbon embodied in the global commodity steel extra-regional trade, and 27% of carbon embodied in overall commodity steel trade.

One of the frustrations of U.S. steelmakers, which led to their support of the U.S. tariff, was China systematically overproducing subsidized steel and flooding the international markets. Furthermore, many steel manufacturers in China and other steel exporting countries like the Commonwealth of Independent States (CIS) produce a comparable unit of steel using significantly more carbon and energy than their cleaner counterparts in their own country or region. We see this disparity of carbon use in production not only in countries like China but also within different states in the U.S.

A tool like the U.S. tariff on steel imports could be good for the climate and the economy if it was based on the carbon footprint of the steel imported and was not just implemented as a blanket tariff. In fact, California recently passed the Buy Clean legislation (AB 262), which calls for the state to create rules for the procurement of infrastructure materials (including steel) purchased with state funds that take into account pollution levels during production. This could be an example of environmental- and climate-friendly procurement and trade tariffs that level the playing field and can benefit both industry and the environment and incentivize high polluting companies that are out-of-state or out-of-country to clean up their production in order to be able to trade with these states or countries.

The study on Embodied Carbon of Globally Traded Goods will be published in September 2018.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.

Infograph-Embodied_Carbon_in_Steel_and_Cement_Trade-Final-Small.jpg

Infographic: Energy Use and Emissions in the Cement Industry

The cement industry is one of the most energy-intensive and highest CO2 emitting industries and one of the key industrial contributors to air pollutions (PM, SO­2, etc.) in the world. The inforgraphic below is prepared by Global Efficiency Intelligence, LLC to summarize some key information on energy use and emissions in the cement industry.

Global Efficiency Intelligence, LLC has experience conducting various projects and studies on energy efficiency, GHG and other emissions reduction, energy benchmarking, and alternative fuel use in the cement industry in China, India, U.S., Southeast Asia, and the Middle East.

Don't forget to Follow us on LinkedIn and Facebook to get the latest about our new blog posts, projects, and publications.


Some of our related publications are:

  • Hasanbeigi, Ali; Nina Khanna, Price, Lynn (2017). Air Pollutant Emissions Projection for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies. Berkeley, CA: Lawrence Berkeley National Laboratory. 1007268

  • Hasanbeigi, Ali; Agnes Lobscheid; Hongyou, Lu; Price, Lynn; Yue Dai (2013). Quantifying the Co-benefits of Energy-Efficiency Programs: A Case-study for the Cement Industry in Shandong Province, China. Science of the Total Environment. Volumes 458–460, 1 August 2013, Pages 624-636.

  • Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang. 2013. Energy Efficiency Improvement Opportunities in the Cement Industry in China. Energy Policy Volume 57, June 2013, Pages 287–297

  • Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

  • Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). Technical and Cost Assessment of Energy Efficiency Improvement and Greenhouse Gas Emissions Reduction Potentials in Thai Cement Industry. Energy Efficiency. DOI 10.1007/s12053-010-9079-1

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). The Use of Conservation Supply Curves in Energy Policy and Economic Analysis: the Case Study of Thai Cement Industry. Energy Policy 38 (2010) 392–405

  • Hasanbeigi, Ali; Price, Lynn; Hongyou, Lu; Lan, Wang (2010). Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case-Study of Sixteen Cement Plants. Energy-the International Journal 35 (2010) 3461-3473.


19 Emerging Technologies for Energy-efficiency and GHG Emissions Reduction in the Cement and Concrete Industry

cement.jpg

The cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO2) emissions worldwide (WBCSD/IEA 2009a). World cement demand and production are increasing; annual world cement production is expected to grow from approximately 4,100 million tonnes (Mt) in 2015 to around 4,800 Mt in 2030 and grow even further after that. The largest share of this growth will take place in developing countries, especially in the Asian continent. This significant increase in cement production is associated with a significant increase in the cement industry’s absolute energy use and greenhouse gas (GHG) emissions..

Figure 1. Global cement production from 1990 to 2030

Figure 1. Global cement production from 1990 to 2030

Studies have documented the potential to save energy by implementing commercially-available energy-efficiency technologies and measures in the cement industry worldwide. However, today, given the projected continuing increase in absolute cement production, future reductions (e.g., by 2030 or 2050) in absolute energy use and CO2 emissions will require further innovation in this industry. Innovations will likely include development of different processes and materials for cement production or technologies that can economically capture and store the industry’s CO2 emissions. The development of these emerging technologies and their deployment in the market will be a key factor in the cement industry’s mid- and long-term climate change mitigation strategies.

Many studies from around the world have identified commercialized sector-specific and cross- energy-efficiency technologies for the cement industry that have already been (See figure below).

Figure 2. Commercialized energy efficiency technologies and measures for cement production process (Source: IIP, 2017)

Figure 2. Commercialized energy efficiency technologies and measures for cement production process (Source: IIP, 2017)

However, information is scarce and scattered regarding emerging energy-efficiency and low-carbon technologies for the cement industry that have not yet been commercialized.

A few years ago, while I was working at Lawrence Berkeley National Laboratory, my colleagues and I wrote a report that consolidated available information on emerging technologies for the cement industry with the goal of giving engineers, researchers, investors, cement companies, policy makers, and other interested parties easy access to a well-structured database of information on this topic.

The information about the 19 emerging technologies covered in the report and was presented using a standard structure for each technology. Table below shows the list of the technologies covered.

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for cement and concrete production (Hasanbeigi et al. 2012)

Table 1. Emerging energy-efficiency and CO2 emissions-reduction technologies for cement and concrete production (Hasanbeigi et al. 2012)

Shifting away from conventional processes and products will require a number of developments including: education of producers and consumers; new standards; aggressive research and development to address the issues and barriers confronting emerging technologies; government support and funding for development and deployment of emerging technologies; rules to address the intellectual property issues related to dissemination of new technologies; and financial incentives (e.g. through carbon trading mechanisms) to make emerging low-carbon technologies, which might have a higher initial costs, competitive with the conventional processes and products.

Our report is published on LBNL’s website and can be downloaded from this Link. Please feel free to contact me if you have any question. Don't forget to follow us on LinkedInFacebook, and Twitter to get the latest about our new blog posts, projects, and publications.

Some of our related publications are:

  • Hasanbeigi, Ali; Agnes Lobscheid; Hongyou, Lu; Price, Lynn; Yue Dai (2013). Quantifying the Co-benefits of Energy-Efficiency Programs: A Case-study for the Cement Industry in Shandong Province, China. Science of the Total Environment. Volumes 458–460, 1 August 2013, Pages 624-636.

  • Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang. 2013. Energy Efficiency Improvement Opportunities in the Cement Industry in China. Energy Policy Volume 57, June 2013, Pages 287–297

  • Morrow, William; Hasanbeigi, Ali; Sathaye, Jayant; Xu, Tengfang. 2014. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India’s Cement and Iron & Steel Industries. Journal of Cleaner Production. Volume 65, 15 February 2014, Pages 131–141

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). Technical and Cost Assessment of Energy Efficiency Improvement and Greenhouse Gas Emissions Reduction Potentials in Thai Cement Industry. Energy Efficiency. DOI 10.1007/s12053-010-9079-1

  • Hasanbeigi, Ali; Menke, Christoph; Therdyothin, Apichit (2010). The Use of Conservation Supply Curves in Energy Policy and Economic Analysis: the Case Study of Thai Cement Industry. Energy Policy 38 (2010) 392–405

  • Hasanbeigi, Ali; Price, Lynn; Hongyou, Lu; Lan, Wang (2010). Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case-Study of Sixteen Cement Plants. Energy-the International Journal 35 (2010) 3461-3473.

 

References:

Hasanbeigi, Ali; Price, Lynn; Lin, Elina. (2012). Emerging Energy Efficiency and CO2 Emissions Reduction Technologies for Cement and Concrete  Production. Berkeley, CA: Lawrence Berkeley National Laboratory LBNL-5434E.

Institute for Industrial Productivity, 2012. Cement energy efficiency technologies.

World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009a. Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050.

World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). 2009b. Cement roadmap targets.